Pre-1963 Mount Agung Eruption History and Magma Evolution Based On Petrological, Mineralogical, and Geochemical Analysis

Aulia Syafitri, I Gusti Bagus Eddy Sucipta, Adzkia Noerma Arifa, Asep Saepuloh, Sri Widiyantoro


Mount Agung is an active stratovolcano on Bali Island. The eruption of Mount Agung, which took place in 1963, was the largest eruption after Mount Krakatoa in 1883 and became one of the most prominent eruptions in the 20th century. Pre-eruption history of Mount Agung has yet to be known in detail. This study aims to determine the history of the pre-1963 volcanic activity of Mount Agung. Based on statistical, petrological, and mineralogical data analyses, the result shows that the pre-1963 eruption of Mount Agung was influenced by three cogenetic magmas that can be divided into four eruption periods, i.e., pre-3200 ± 60 BP, 3200 ± 60 – 1870 ± 40 BP, 1870 ± 40 – 1040 ± 50 BP, and post-1040 ± 50 BP. Mount Agung’s historical activity was marked by the injection of the basaltic magma in the pre-3200 ± 60 BP period and reached its peak in the 3200 ± 60 – 1870 ± 40 BP period. Both periods produced dominant basalt to basaltic andesite lava units (SiO2 51 – 56%). The end of the 3200 ± 60 – 1870 ± 40 BP period was marked by Bukit Pawon parasitic cone formation. In 1870 ± 40 – 1040 ± 50 BP, many pyroclastic flow units were formed in addition to the emergence of basalt to andesite lava units. During this period, magma differentiation continued as indicated by the rising content of SiO2 (51 – 58%), which was controlled by crystallization fractionation. During this period, a small injection of basaltic magma occurred, which caused the magma to mix with the previously differentiated magma. At the beginning of the post-1040 ± 50 BP period, there was a slight injection of basaltic magma. Afterward, magma underwent intensive differentiation coinciding with the increase of SiO2 (53 – 63%), followed by crystal fractionation and slight crustal contamination. The evolved magma can produce pyroclastic fall, pyroclastics flow, and lava units.


Mount Agung, eruption periods, magmatic differentiation

Full Text:



Kementrian ESDM. Tipe Gunung Api di Indonesia (A, B, dan C) Available online: memiliki jumlah gunungapi aktif,aktif yang dipantau oleh PVMBG (accessed on Nov 26, 2020).

Fontijn, K.; Costa, F.; Sutawidjaja, I.; Newhall, C.; Herrin, J. A 5000-year record of multiple highly explosive mafic eruptions from Gunung Agung (Bali, Indonesia): implications for eruption frequency and volcanic hazards. Bull. Volcanol. 2015, 77, 1–15, doi:10.1007/s00445-015-0943-x.

Rampino, M.R.; Self, S. Historic eruptions of Tambora (1815), Krakatau (1883), and Agung (1963), their stratospheric aerosols, and climatic impact. Quat. Res. 1982, 18, 127–143, doi:10.1016/0033-5894(82)90065-5.

Self, S.; Rampino, M.R. The 1963-1964 eruption of Agung volcano (Bali, Indonesia). Bull. Volcanol. 2012, 74, 1521–1536, doi:10.1007/S00445-012-0615-Z.

Zen, M.T.; Hadikusumo, D. Preliminary report on the 1963 eruption of Mt.Agung in Bali (Indonesia). Bull. Volcanol. 1964, 27, 269–299, doi:10.1007/BF02597526.

Tanguy, J.C.; Ribière, C.; Scarth, A.; Tjetjep, W.S. Victims from volcanic eruptions: a revised database. BVol 1998, 60, 137–144, doi:10.1007/S004450050222.

Geiger, H.; Troll, V.R.; Jolis, E.M.; Deegan, F.M.; Harris, C.; Hilton, D.R.; Freda, C. Multi-level magma plumbing at Agung and Batur volcanoes increases risk of hazardous eruptions. Sci. Rep. 2018, 8, 10547, doi:10.1038/s41598-018-28125-2.

Nasution, A.; Haerani, N.; Mulyadi, D.; Hendrasto, M. Peta Geologi Gunungapi Agung, Bali, Skala 1 : 50.000; Bandung, 2004;

Dempsey, S.R. Geochemistry of volcanic rocks from the Sunda Arc, Durham University, 2013.

Williams, H.; Turner, F.J.; Gilbert, C.M. Petrography : an introduction to the study of rocks in thin sections /; 2nd ed.; W.H. Freeman: San Fransisco, 1982; ISBN 0716713764.

Morimoto, N.; Fabries, J.; Fergusson, A.K.; Guizbourg, I.D.; Ross, M.; Seifert, F.A.; Zussman, J.; Aoki, K.; Gottardi, G. Nomenclature of pyroxenes. Am. Mineral. 1988, 73, 1123–1133.

Buddington, A.F.; Lindsley, D.H. Iron-titanium oxide minerals and synthetic equivalents. J. Petrol. 1964, 5, 310–357.

Kelsey, C.H. Calculation of the CIPW norm. Mineral. Mag. 1965, 34, 276–282.

Hollocher, K. CIPW Norm Calculation Program 2004.

Le Bas, M.J.; Le Maitre, R.W.; Streckeisen, A.; Zanettin, B. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. J. Petrol. 1986, 27, 745–750.

Wilson, M. Igneous Petrogenesis; Springer Netherlands, 1989;

Peccerillo, A.; Taylor, S.R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib. to Mineral. Petrol. 1976, 56, 63–81, doi:10.1007/bf00384745.

Harker, A. The Natural History of Igneous Rocks,; Methuen & Co.: London, 1909;

Winter, J.D. Principles of Igneous and Metamorphic Petrology; 2nd ed.; Pearson Education: Harlow, 2014; ISBN 9781292021539.

Novak, S.W.; Bacon, C.R.; Peck, D.L. Pliocene Volcanic Rocks of the Coso Range, Inyo County, California: U. S. Geological Survey Professional Paper 1383; Denver, CO, 1986;

Parman, S.W.; Grove, T.L.; Kelley, K.A.; Plank, T. Along-arc variations in the pre-eruptive H2O contents of mariana arc magmas inferred from fractionation paths. J. Petrol. 2011, 52, 257–278, doi:10.1093/PETROLOGY/EGQ079.

Syahbana, D.K.; Kasbani, K.; Suantika, G.; Prambada, O.; Andreas, A.S.; Saing, U.B.; Kunrat, S.L.; Andreastuti, S.; Martanto, M.; Kriswati, E.; et al. The 2017–19 activity at Mount Agung in Bali (Indonesia): Intense unrest, monitoring, crisis response, evacuation, and eruption. Sci. Reports 2019 91 2019, 9, 1–17, doi:10.1038/s41598-019-45295-9.

Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Spec. Publ. 1989, 42, 313–345, doi:10.1144/GSL.SP.1989.042.01.19.

Dirk, M.H.J. Petrologi - geokimia batuan Gunung Api Tampomas dan sekitarnya. J. Geol. Indones. 2008, 3, 23–35, doi:10.17014/IJOG.3.1.23-35.

Pearce, J.A. Role of the Sub-Continental Lithosphere in Magma Genesis at Active Continental Margins. In Continental basalts and mantle xenoliths; Shiva Publications: Nantwich, Chesire, 1983; pp. 230–249.

Plank, T. Constraints from Thorium/Lanthanum on Sediment Recycling at Subduction Zones and the Evolution of the Continents. J. Petrol. 2005, 46, 921–944, doi:10.1093/PETROLOGY/EGI005.

Barresi, T.; Nelson, J.L.; Dostal, J.; Friedman, R. Evolution of the hazelton arc near terrace, british columbia: Stratigraphic, geochronological, and geochemical constraints on a late triassic -early jurassic arc and cu-au porphyry belt. Can. J. Earth Sci. 2015, 52, 466–494, doi:10.1139/CJES-2014-0155/SUPPL_FILE/CJES-2014-0155SUPPL.XLSX.

Reubi, O.; Nicholls, I.A. Structure and Dynamics of a Silicic Magmatic System Associated with Caldera-Forming Eruptions at Batur Volcanic Field, Bali, Indonesia. J. Petrol. 2005, 46, 1367–1391, doi:10.1093/PETROLOGY/EGI019.

Rogkala, A.; Petrounias, P.; Tsikouras, B.; Giannakopoulou, P.P.; Hatzipanagiotou, K. Mineralogical Evidence for Partial Melting and Melt-Rock Interaction Processes in the Mantle Peridotites of Edessa Ophiolite (North Greece). Miner. 2019, Vol. 9, Page 120 2019, 9, 120, doi:10.3390/MIN9020120.

Arai, S. Characterization of spinel peridotites by olivine-spinel compositional relationships: Review and interpretation. Chem. Geol. 1994, 113, 191–204, doi:10.1016/0009-2541(94)90066-3.

Renjith, M.L. Micro-textures in plagioclase from 1994-1995 eruption, Barren Island Volcano: Evidence of dynamic magma plumbing system in the Andaman subduction zone. Geosci. Front. 2014, 5, 113–126, doi:10.1016/j.gsf.2013.03.006.



 RJI Main logo

Indexed By: