Groundwater Recharge Estimation Using Water Budget and Water Table Fluctuation Method in the Jakarta Groundwater Basin

Gumilar Utamas Nugraha, Rachmat Fajar Lubis, Hendra Bakti, Priyo Hartanto


The Jakarta Groundwater Basin is one of the groundwater basins with the highest development, economic, and business activities in Indonesia. Groundwater damage has become a major growing issue in the Jakarta groundwater basin. Intensive development has led to the overuse of groundwater in this basin. Efforts are needed to manage, protect, and conserve groundwater in this basin to support the development and economic activities sustainably. Jakarta, as the capital city of Indonesia, is located in the groundwater basin. Groundwater sustainability is determined by the amount of groundwater recharge in those basins, so knowledge of groundwater recharge is important. Groundwater is an important part of a hydrological cycle, and groundwater recharge ensures groundwater sustainability in some areas. This study aims to estimate groundwater recharge in the Jakarta groundwater basin using the water budget and water table fluctuation method. The water budget method used is Thornthwaite, Dingman, and Edijatno-Michel. The Water Table Fluctuation methods used are Dellin and Delottier. Analysis of the amount of groundwater recharge estimation is carried out using the ESPERE Version 2 software. Output data is then further analyzed using descriptive and inferential statistical approaches to determine whether there is a difference in groundwater recharge amount based on the water budget and water table fluctuation. The results show that groundwater recharge based on water budget methods is 209–885 mm/year. The estimation of the largest amount of recharge was obtained using the Edijatno-Michel approach. The smallest amount of recharge was estimated using the Dingman-Hamon method. The average recharge of groundwater in Tanjung Priok is 305 mm/year, Kemayoran is 209 mm/year, and Bogor is 885 mm/year. Only 8–15 % of the annual rainfall that converted into groundwater recharge at the study area. Based on the analysis using the water table fluctuation method, groundwater recharge in this basin has a value of 240 mm/year. The variation of the amount of groundwater recharge is caused by the pros and cons of each method. Apart from that, geological factors, land use/land cover factors, and climatic variations in this basin can affect the research results. By considering the amount of groundwater recharge, groundwater management in the Jakarta groundwater basin needs to be carried out for harmonious development and groundwater conservation.


groundwater recharge; Jakarta Groundwater Basin; ESPERE; Water Budget; Water Table Fluctuation

Full Text:



Cassardo, C.; Jones, J.A.A. Managing water in a changing world. Water (Switzerland) 2011.

Chaussard, E.; Amelung, F.; Abidin, H.; Hong, S.H. Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction. Remote Sens. Environ. 2013, doi:10.1016/j.rse.2012.10.015.

Lubis, R.F. Urban hydrogeology in Indonesia: A highlight from Jakarta. IOP Conf. Ser. Earth Environ. Sci. 2018, 118, doi:10.1088/1755-1315/118/1/012022.

Abidin, H.Z.; Andreas, H.; Gumilar, I.; Wibowo, I.R.R. On correlation between urban development, land subsidence and flooding phenomena in Jakarta. In Proceedings of the IAHS-AISH Proceedings and Reports; 2015.

BPS DKI Jakarta Jakarta Dalam Angka 2016. BPS DKI Jakarta 2016.

Kagabu, M.; Delinom, R.M.; Lubis, R.F.; Shimada, J.; Taniguchi, M. Groundwater Characteristics in Jakarta Area, Indonesia. J. Ris. Geol. dan Pertamb. 2010, 20, 69, doi:10.14203/risetgeotam2010.v20.35.

Makoto, K.; Jun, S.; Robert, D.; Toshio, N.; Taniguchi, M. Groundwater age rejuvenation caused by excessive urban pumping in Jakarta area, Indonesia. Hydrol. Process. 2012.

Delinom, R. Groundwater management issues in the Greater Jakarta area. Proc. Int. Work. Integr. Watershed Manag. Sustain. Water Use a Humid Trop. Reg. 2008, 8, 40–54.

Abidin, H.Z.; Andreas, H.; Gumilar, I.; Fukuda, Y.; Pohan, Y.E.; Deguchi, T. Land subsidence of Jakarta (Indonesia) and its relation with urban development. Nat. Hazards 2011, doi:10.1007/s11069-011-9866-9.

Lubis, R.F.; Sakura, Y.; Delinom, R. Groundwater recharge and discharge processes in the Jakarta groundwater basin, Indonesia. Hydrogeol. J. 2008, doi:10.1007/s10040-008-0278-1.

Samsuhadi, S. PEMANFAATAN AIR TANAH JAKARTA. J. Air Indones. 2018, doi:10.29122/jai.v5i1.2428.

Mukhtar, O.; Pranantya, P.A.; Hadian, S.D. MANAJEMEN AIR TANAH DI CEKUNGAN AIR TANAH DKI. Fak. Tek. Geol. Univ. Padjadjaran 2012.

Tirtomihardjo, H. Groundwater Basins in Indonesia and their Potency. Asia Pacific Water Forum Reg. Water Knowl. Hub Groundw. Manag. Launch Meet. 2011.

Lubis, R.F.; Onodera, S.; Onishi, K.; Saito, M.; Bakti, H.; Delinom, R.; Shimizu, Y. Interaction between river and groundwater in Jakarta megacity, coastal alluvial plain, Indonesia. In Proceedings of the IAHS-AISH Publication; 2011.

Seizarwati, W.; Syahidah, M.; Rengganis, H. The Decreasing of Groundwater Recharge Capacity in Jakarta Groundwater Basin Using Water Balance Method for Urban Area. Ris. Geol. DAN Pertamb. 2017.

Lubis, R.F. Bagaimana Menentukan Daerah Resapan Air Tanah. XRDS Crossroads, ACM Mag. Students 2011.

de Vries, J.J.; Simmers, I. Groundwater recharge: An overview of process and challenges. Hydrogeol. J. 2002, doi:10.1007/s10040-001-0171-7.

Mauser, W.; Ludwig, R. Groundwater recharge. In Regional Assessment of Global Change Impacts: The Project GLOWA-Danube; 2016 ISBN 9783319167510.

Engelen, G.B.; Kloosterman, F.H. Regional Hydrological Systems Analysis in the northern coastal plain of Java, Indonesia. In; 1996.

Lanini, S.; Caballero, Y.; Seguin, J.J.; Maréchal, J.C. ESPERE-A Multiple-Method Microsoft Excel Application for Estimating Aquifer Recharge. Groundwater 2016, doi:10.1111/gwat.12390.

Thornthwaite, C.W. An Approach toward a Rational Classification of Climate. Geogr. Rev. 1948, doi:10.2307/210739.

Dingman, S.L. PHYSICAL Third Edition; 2015; ISBN 9781478611189.

Edijatno; Michel, C. Un modèle Pluie-Débit à trois paramètres. La Houille Blanche 1989.

Westenbroek, M.S.; Kelson, V. a.; Dripps, W.R.; Hunt, R.J.; Bradbury, K.R. SWB — A Modified Thornthwaite-Mather Soil-Water- Balance Code for Estimating Groundwater Recharge. U.S. Geol. Surv. Tech. Methods 6-A31 2010.

Bakundukize, C.; van Camp, M.; Walraevens, K. Estimation of Groundwater Recharge in Bugesera Region (Burundi) using Soil Moisture Budget Approach. Geol. Belgica 2011.

Delin, G.N.; Healy, R.W.; Lorenz, D.L.; Nimmo, J.R. Comparison of local- to regional-scale estimates of ground-water recharge in Minnesota, USA. J. Hydrol. 2007, doi:10.1016/j.jhydrol.2006.10.010.

Delottier, H.; Pryet, A.; Lemieux, J.M.; Dupuy, A. Estimating groundwater recharge uncertainty from joint application of an aquifer test and the water-table fluctuation method. Hydrogeol. J. 2018, doi:10.1007/s10040-018-1790-6.

Jaworska-Szulc, B. Groundwater flow modelling of multi-aquifer systems for regional resources evaluation: The Gdansk hydrogeological system, Poland. Hydrogeol. J. 2009, 17, 1521–1542, doi:10.1007/s10040-009-0473-8.

FAO CROPWAT 8.0. L. water, databases software, Crop. 2018.

Johnson, A.I. Specific Yield Compilation of Specific Yields for Various Materials-- Hydrologic properties of earth materials. Geol. Surv. water-supply Pap. 1662-D 1967, 80.

Agriculture, B.M. of Water conservation factsheet: Soil water storage capacity and avilable soil moisture. Water Conserv. Factsheet 2015, 1, 1–4.


  • There are currently no refbacks.

 RJI Main logo

Indexed By: